Matt Shipman | WRAL TechWire - Part 3
Matt Shipman

Matt Shipman


Posts by Matt Shipman


New NCSU research leads to 25% smaller RFID tags

Engineering researchers at North Carolina State University have developed a suite of techniques that allow them to create passive radio-frequency identification (RFID) tags that are 25 percent smaller – and therefore less expensive. This is possible because the tags no longer need to convert alternating current (AC) to direct current (DC) in order for the tags to function effectively. In passive RFID technology, a “reader” transmits a radio signal that is picked up by the RFID tag. The tag converts the AC of the radio signal into DC in order to power internal circuits. Those circuits control the signal...

Read More

NCSU researchers develop technique to design new antennas

Researchers at North Carolina State University have developed a model that allows antenna designers to identify efficient configurations for antenna designs in minutes, rather than days. The model is designed to expedite development of next generation “multi-input, multi-ouput” (MIMO) antennas, which allow devices to get more use out of the available bandwidth. “Our model produces nearly optimal results, and should save designers an enormous amount of time in reaching results that can be used to create prototypes or that could be refined using conventional modeling techniques,” says Jacob Adams, an assistant professor of electrical and computer engineering at NC...

Read More

Now that’s bullet proof: NCSU prof’s metal foam obliterates bullets

Composite metal foams (CMFs) are tough enough to turn an armor-piercing bullet into dust on impact. Given that these foams are also lighter than metal plating, the material has obvious implications for creating new types of body and vehicle armor – and that’s just the beginning of its potential uses. Afsaneh Rabiei (see bio below), a professor of mechanical and aerospace engineering at NC State, has spent years developing CMFs and investigating their unusual properties. The video seen here shows a composite armor made out of her composite metal foams. The bullet in the video is a 7.62 x...

Read More

Cancer breakthrough? NCSU-UNC microneedle patch delivers immunotherapy

Biomedical engineering researchers at North Carolina State University and the University of North Carolina at Chapel Hill have developed a technique that uses a patch embedded with microneedles to deliver cancer immunotherapy treatment directly to the site of melanoma skin cancer. In animal studies, the technique more effectively targeted melanoma than other immunotherapy treatments. According to the CDC, more than 67,000 people in the United States were diagnosed with melanoma in 2012 alone – the most recent year for which data are available. If caught early, melanoma patients have a 5-year survival rate of more than 98 percent, according...

Read More

UNC-NCSU scientists’ ‘depots’ increase drug efficacy against tumors

Biomedical engineering researchers have developed a technique for creating microscopic “depots” for trapping drugs inside cancer tumors. In an animal model, these drug depots were 10 times more effective at shrinking tumors than the use of the same drugs without the depots. Some anti-cancer drugs are most effective outside of cancer cells. For example, the anti-cancer drug TRAIL attacks a cancer cell’s cell membrane, while another drug, cilengitide, inhibits the growth of blood vessels around a tumor, starving it of nutrients. To improve the effectiveness of these drugs, scientists want to both prevent them from being absorbed into the...

Read More

NCSU startup aims to help firms detect, respond to cloud computing bugs

In late 2012, Helen Gu presented a research paper on a new tool designed to prevent disruptions in cloud computing. Less than four years later, she has launched a start-up – – to help companies that use cloud computing improve the user experience for their customers. “The technology I developed has evolved significantly since 2012,” says Gu, an associate professor of computer science at NC State University. “What was then a proof-of-concept is now a technology that works seamlessly with real-world cloud systems, like Amazon Web Services, with a click of a button.” Gu’s technology allows companies that use cloud computing to...

Read More

Researchers disguise drugs to fight cancer

Researchers have for the first time developed a technique that coats anticancer drugs in membranes made from a patient’s own platelets, allowing the drugs to last longer in the body and attack both primary cancer tumors and the circulating tumor cells that can cause a cancer to metastasize. The work was tested successfully in an animal model. “There are two key advantages to using platelet membranes to coat anticancer drugs,” says Zhen Gu, corresponding author of a paper on the work and an assistant professor in the joint biomedical engineering program at North Carolina State University and the University...

Read More

Algorithm lets powered prosthetics tune themselves

When amputees receive powered prosthetic legs, the power of the prosthetic limbs needs to be tuned by a prosthetics expert so that a patient can move normally – but the prosthetic often needs repeated re-tuning. Biomedical engineering researchers at North Carolina State University and the University of North Carolina at Chapel Hill have now developed software that allows powered prosthetics to tune themselves automatically, making the devices more functionally useful and lowering the costs associated with powered prosthetic use. “When a patient gets a powered prosthetic, it needs to be customized to account for each individual patient’s physical condition,...

Read More

A nano first: NCSU researchers use nanoscale vehicle to deliver gene-editing tool

Researchers from North Carolina State University and the University of North Carolina at Chapel Hill have for the first time created and used a nanoscale vehicle made of DNA to deliver a CRISPR-Cas9 gene-editing tool into cells in both cell culture and an animal model. The CRISPR-Cas system, which is found in bacteria and archaea, protects bacteria from invaders such as viruses. It does this by creating small strands of RNA called CRISPR RNAs, which match DNA sequences specific to a given invader. When those CRISPR RNAs find a match, they unleash Cas9 proteins that cut the DNA. In...

Read More