Editor’s note: WRAL Local Tech Wire recently added more sources for news, including stories, photos and graphics produced by the news services of various universities. Such stories are labeled as UniversityTech and with the appropriate source. By adding stories and information from collegiate news services, LTW is enhancing significantly its coverage of scientific and research efforts at regional universities where many of tomorrow’s discoveries are being made and the foundations of new companies are in the process of being created.
DURHAM, N.C. – An international team of researchers has identified three gene variants in the DNA of 486 people infected with HIV that appear to have helped some of the patients fight off the virus and delay the onset of full-blown AIDS.
The researchers expect the new findings to aid the search for an HIV vaccine that would work by boosting the protective effects of one or more of these genes, and help the body’s own immune system overcome an infection. One of the genes looks particularly attractive as a vaccine target.
The study, published early online by the journal Science July 19, was directed by David Goldstein, Ph.D., at Duke University and is the first large cooperative study with major findings arising from the Center for HIV/AIDS Vaccine Immunology, (CHAVI) a seven-year project funded by the National Institute of Allergy and Infectious Diseases, part of the National Institutes of Health, in 2005, led by Duke’s Barton Haynes, M.D.
It took the international genetics team, called EuroCHAVI, pooling their cohorts of carefully selected patients and using the latest in genome-wide screening technology, 18 months to discover the three genes, that together greatly increase our knowledge of why patients differ in how well they can control the virus that causes AIDS.
These findings represent only the first of what investigators said will be a series of future genome-wide studies to pinpoint additional targets for HIV vaccines. In the new analysis, patients with specific gene variants in key immune system cells appear to be much better at controlling the proliferation of the virus after infection. These gene variants are known as polymorphisms.